human action recognition

Paper review

A survey on vision-based human action recognition_Image and Vision Computing_2010

[ATIQUR R AHAD] Analysis of Motion Self-Occlusion Problem Due to Motion Overwriting

  • year : 2010
  • employed database : six activities (aerobic data set) that are taken from a frontal-view camera; indoor; same illumination level; frame resolution 320 x 240 pixel.
  • application : [motion recognition] to overcome a motion self-occlusion problem due to motion overlapping.
  • result : recognition result > 94%; robustness analysis 93,8 %.
  • feature : DMHI 28-D, DMEI; seven Hu invariants; 64-D feature vector;
  • recognition method : appearance-based template matching; KNN; Euclidean measure.
  • comparation data/method : MMHI 14-D, HMHH; Zernike moments.
  • comment : dalam satu frame hanya ada satu action yang dikenali; In door di lab.

[YUXIAO HU] Action Detection in Complex Scenes with Spatial and Temporal Ambiguities

  • year : 2010
  • employed database : CMU human action (5 action in crowded; 1 action in a frame) 160 x 120 pixel; data in shopping mall.
  • application : [action detection] in complex scenes.
  • result : pushing button : (R/P : 0.2/1.0 & R/P : 0.8/0.9); two-handed wave : (R/P : 0.2/1.0 & R/P : 0.8/0.1).
  • feature : combination of MHI (motion feature), FI & HOG (appearance-based feature).
  • detection method : use the output of face detector or probabilistic trackers to estimates of the human bodies; use head detection; CNN.
  • learning method : SMILE-SVM (a novel – multiple instance learning); manually labelled to build positive & negative bags.
  • recognition method : locate the human actions in both spatial & temporal domains.
  • comparation data/method : MI-SVM; [14] method.
  • comment : hanya mengenali/ deteksi satu aksi.

 [ASHIK EFTAKHAR] Direction-Oriented Human Motion Recognition with Prior Estimation of Directions

  • year : 2011
  • employed database : 10 action; backgroundless; 8 uncalibrated cameras; 800 motion data separated into eight orientations.
  • application : estimate the possible orientations of an unregistered motion.
  • result : (reduced the searching time) for bin length 1: RR: 96%, ST: 15,1 ms; bin length 1/10: RR: 86%, ST: 11,6 ms.
  • feature : MHI; XOR image; eigenvector; KLT; PCA.
  • learning method : global eigenspaces.
  • recognition method : direction-oriented motion recognition approach; hierarchical eigenspaces; top-down & down-top manner.
  • comparation data/method : [21] [22].
  • comment : use SMoDB; satu aksi dalam satu frame; data di lab.

[MISON PARK] Detecting Human Flows on a Road Different from Main Flows

  • year : 2011
  • employed database : image obtain from a surveillance camera (outdoor scenes).
  • application : to find a person having a dufferent behavior or motion from others.
  • result : can detect the abnormal motion.
  • feature : Harris corner detector; coordinate space then converted to velocity, velocity magnitude & velocity orientation.
  • detection method : pyramidal search.
  • tracking method : The Lucas-Kanade tracker.
  • recognition method : (abnormal motion recog) is determined by the number of feature points clustered in each class; clustering by a look-up table.
  • comment : abnormal motion ditentukan oleh seorang yang berbeda motion dengan banyak orang; hanya mengenali 1 abnormal motion saja.

 [ANGELA YAO] A Hough Transform-Based Voting Framework for Action Recognition

  • year : 2010.
  • employed database : Weizmann, KTH (single person actions in front of static backgrounds); UCF sports dataset; UCR videoweb.
  • application : to classify and localize human actions in video.
  • result : classification: (Weiz) 95.6% & (KTH) 92%; localization: (KTH) 0.89; classification: (UCF) 86.6% (UCR) 92.6%.
  • feature : spatio-temporal action Hough space; color & histograms of gradients; HSV color space & a local binary pattern.
  • detection method : Hough transform voting; Hough forest; spatio-temporal domain.
  • learning method : random trees; Houghforest structure.
  • tracking method : cuboid representation; cast votes for action label & the spatio-temporal center; Parzen window; the local maxima in the remaining; 3D Hough space.
  • recognition method : (classification) random forest.
  • comparation data/method : [21][29][17][23][22][31][14][18] & [20][36][34].
  • comment : untuk pengklasifikasi & pengalokasi aksi.

[ZHE LIN] Recognizing Actions by Shape-Motion Prototype Trees

  • year : 2009.
  • employed database : Weizmann, KTH (single person actions in front of static backgrounds); locally collected gesture dataset-14 action-static background.
  • application : action recognition.
  • result : 91.07% (with dynamic background); 95.24% (with static background); 100% (Weizmann); 95.77% (KTH).
  • feature : kernel density estimation; QBMF; 256D shape descriptor; 256D motion descriptor.
  • detection method : maximizing a joint likelihood of the actor location; as [4].
  • learning method : joint shape & motion space via hierarchical k-means clustering.
  • tracking method : maximizing a joint likelihood of the action prototype; DFS on the learned binary tree; as [3].
  • recognition method : dynamic prototype sequence matching; frame-to-prototype matching; prototype-based sequence matching; k-NN classifier.
  • comparation data/method : [2][8][9][19][23][25].
  • comment : data lab; testing pakai moving camera and in background clutter and other moving objects; 1 aksi.

[K.K. REDDY] Incremental Action Recognition Using Feature-Tree

  • year : 2009
  • employed database : KTH; IXMAS multiview datashet.
  • application : incremental action recognition.
  • result : KTH : 87.7%; SR tree 30 x faster than exhaustive NN search; IXMAS : with 4 camera views : 69.6%, with voting improve 72.6%.
  • feature : local spatio-temporal feature; SR tree.
  • detection method : spatio temporal interest point detector: 2D Gaussian filter & 1D Gabor filter.
  • learning method : SR tree.
  • tracking method :
  • recognition method : simple voting method by nearest neighbor (NN) feature.
  • comparation data/method : [25][14][22][27][3][15][23].
  • comment : pengenalan action untuk max 2 aksi dalam 1 frame; background statis (lab).

[ASHIK EFTAKHAR] Multiple Persons Action Recognition by Fast Human Detection

  • year : 2011
  • employed database : INRIA datashet.
  • application : action recognition.
  • result : KTH : detection rate: 87%; tracking rate: 49%; recognition rate: 93%.
  • feature : gradient feature.
  • detection method : HOG + integral histogram.
  • tracking method : pyramid Lucas-Kanade method.
  • recognition method : motion template, SVM.
  • comment : pengenalan action untuk max 3 aksi dalam 1 frame; background outdoor.

[ASHIK EFTAKHAR] Viewpoint-oriented Human Activity Recognition in a Cluttered Outdoor Environment

[JUERGEN GALL] Hough Forests for Object Detection, Tracking, and Action Recognition

[P. TURAGA] Statistical Computations on Grassman and Stiefel Manifolds for Image and Video-Based Recognition